Abstract

This paper presents an analysis of the indicator power of an oil-free scroll vacuum pump based on the indicator diagrams obtained through high-speed pressure sensors. These values are compared with the results of calculations using a mathematical model of the pump working process. It is shown that the divergence of the calculated results and experimental values does not exceed 4%, which confirms the adequacy of the developed mathematical model. The total power of the scroll pump exceeds the indicator power by more than 2 times due to the friction losses between the face seals and disks of the reciprocal scroll elements, friction losses in the stuffing box seals and rolling bearings, as well as due to the coefficient of efficiency of the motor. The influence of the radial clearance between the scroll elements on the power consumption is considered. It is shown that at low pressures nearing the ultimate pressure, the power increases with the increased clearance, while at inlet pressures exceeding 40 kPa it decreases. The performed analysis can be used for selecting the optimal geometrical parameters of the scroll elements and increasing power efficiency of the pump depending on specific operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call