Abstract

실외 도로에서의 차량 검출 성능은 기상 상태, 태양 이동에 의한 그림자, 조도 변화 등에 영향을 받는다. 본 논문에서는 낮 시간대의 실외도로에서 이러한 주변 환경변화에 강건한 배경 추정 알고리즘과 연동한 차량 검출 시스템을 제안한다. 배경 추정 알고리즘은 혼합 가우시안 모델을 적용하고 후보 영역에 대한 차량 검출은 Adaboost 알고리즘을 적용하였다. 흐린 날, 비오는 날 등 동일한 실제 도로에서 서로 다른 기후에 획득한 CCTV 비디오 영상을 사용한 실험을 통해 제안하는 방법이 일반 도로에서의 차량 검출에 유용한 것을 확인하였다. Detection performance of the vehicle on the road depends on weather conditions, the shadow by the movement of the sun, or illumination changes, etc. In this paper, a vehicle detection system in conjunction with a robust background estimate algorithm to environment change on the road in daytime is proposed. Gaussian Mixture Model is applied as background estimation algorithm, and also, Adaboost algorithm is applied to detect the vehicle for candidate region. Through the experiments with input videos obtained from a various weather conditions at the same actual road, the proposed algorithm were useful to detect vehicles in the road.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.