Abstract

Mutual consistency of regularities demonstrated by the flow and hydraulic resistance is analyzed in this article. It is proven that the values of friction factors of pipes, identified through the employment of traditional methods, differ from those of channels by 4 times. It is also proven that the average velocity deficit inside pipes and channels, identified by integrating velocity profiles that depend on the Karman parameter, differ by only 1.5 times. The relation between the Karman parameter and the average velocity deficit provides this parameter with a clear physical sense.The original method of reconciliation of the experimental regularity of smooth pipes against the resistance ratio formula, obtained by integrating the logarithmic velocity profile, adjusts the value of the Karman parameter and the second constant of the velocity profile, as both are slightly different from the experimental values identified by I. Nikuradze.The average velocity deficit identified for the flow in rough pipes by integrating the velocity profile coincides with the same in smooth pipes, and they both have the same dependence on the Karman parameter. The adjusted Karman parameter value is almost the same for rough and smooth pipes. The adjusted value of the second turbulence constant for rough pipes is a little higher than the experimental value identified by I. Nikuradze.Adjusted first and second constant values of turbulence for rough and smooth pipes assure more consistency between the regularities of resistance and distribution of velocities inside smooth and rough pipes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call