Abstract

The control of the shape of the optical part surface by the interference method has become an integral part of the process of their shaping. With a precisely focused interferometer interferometry allows obtaining an interference pattern similar to a topographic map of the error profile of the wave surface under investigation. The interferometer must form a map of the optical surface with high accuracy --- the permissible distortion of the interference fringe caused by an interferometer error should not exceed 0.1 of the distortion value caused by an error on the examined surface. The dependence of the interference pattern formation on the errors in the arrangement of the interferometer components, i.e., defocusing, was theoretically analyzed using Fourier transforms. The analysis was performed for an interferometer containing a laser illuminator, a concave spherical mirror with a central hole, coaxial to the illuminator, and a beamsplitting element in the form of a cube-prism with a semitransparent hypotenuse face. On the first flat face of the cube-prism, a microspherical concave mirror is made with the center located on the optical axis of the interferometer. A method for calculating the defocusing of a controlled spherical mirror and the corresponding wave aberration of the working wavefront is presented. An example of calculating the design parameters of the interferometer and the permissible defocusing of the controlled spherical mirror is given

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.