Abstract
A glass product manufacturing company transports a large number of flat glass products from a manufacturing firm to a building construction site. The products are transported using specially designed racks, which assure fewer glass breakages during the deliveries. This study determines the sizes of the racks which minimize the total logistics cost including costs for rack purchasing, handling, transportation, and inventory costs. The determination of the rack size should consider tradeoff relationships between the amount of glasses piled in a rack and the number of racks loaded on a truck, and affects the required number of racks and the truck operational cost. A truck loading algorithm is proposed to maximize a high truck utilization, and an enumeration method is proposed to determine the optimal combination of rack sizes considering the total logistics cost. The numerical example is solved by using a real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Institute of Industrial Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.