Abstract

In the industrial vision systems, image correction has great influence on the overall performance of measurement or inspection. The overall area of distorted image is usually splitted into small control areas, and each area is corrected by its control points. The performance of correction methods using control points can be improved by reduction of control areas because the computational time and memory highly depend on the number of control areas. We develop a merging algorithm that reduces control areas and preserves the correction accuracy. The algorithm merges the splitted control areas by use of quad tree method. Experimental results are presented to verify the usefulness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.