Abstract
This paper considers the Dirichlet problem for a second-order partial differential equation with the Riemann-Liouville derivative with respect to one of two independent order variables, less than two, in the upper half-plane. The equation under study turns into a two-dimensional Laplace equation if the order of the fractional derivative coincides with an integer. The main result of this work is the proof of theorems on the existence and uniqueness of a solution to the problem posed. An explicit form of representation of the solution is obtained. Сorresponding asymptotic estimates аre given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.