Abstract
This paper presents a distortion compensation algorithm for cable-driven master devices. Such device has four string pots at four corners of a frame. Four cables are tied from the four corners to the center holder. When the central holder, which is a haptic grip, moves, lengths of the four cables will change. From the four cable lengths, the spatial position of the haptic grip can be estimated using triangulation. In this case, distortion such as barrel image of the image field occurs when estimating a position with an offset parallel to the plane in which the four string pots are located. The closer to the corner, the smaller the position estimate value is than the true value. After distortion phenomenon is modeled by projecting onto the ellipsoid, the position in the vertical direction of the cable plane is compensated by the corresponding value and flattened. The mean error in the x-direction position was improved by 91% from 0.7833±0.8381 mm to -0.0709±0.4341 mm. This cable-driven master device can be used as a haptic device for operating a surgical robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society for Precision Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.