Abstract

The flange hub is a main component in an automotive steering system. In general, the flange hub are fabricated by mechanical machining, which is a process where material waste is inevitable. It is well-known that a net-shape cold forging cannot only reduce material waste but can also improve the mechanical strength of the final product. Thus, a forging process design was conducted for production of a flange hub. Significant spring-back occurs around the flange due to its small thickness in conjunction with the residual stresses after forging. In order to achieve the required dimensional accuracy, a process design with appropriate spring-back control is needed. In this study, a modification of the forging die was designed based on FE analysis with the purpose of spring-back compensation. Four kinds of different die designs were evaluated and the optimum design has two times less spring-back than the initial design. The compensation angle of the optimum design is 0.5 degrees. The results have been experimentally confirmed by cold forging of a flange hub and comparing the amount of spring-back between the actual component and the FE analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call