Abstract

본 논문은 다중 센서 융합의 성능을 높이기 위해 적응형 퍼지-칼만 필터를 적용하고 교차검증법(cross-validation)으로 퍼지시스템 입 출력 소속 함수의 매개변수를 조정하는 방법을 제안한다. 적응형 퍼지-칼만 필터는 가속도의 변화량과 칼만 필터의 잔여오차를 입력으로 시스템잡음, 측정잡음을 추정하여 칼만 이득을 변화시킨다. 적용된 퍼지-칼만 필터는 잡음들을 가우시안 분포로 가정한 이전 방법과 비교하여 비선형/비가우시안 잡음에 강인한 추정 결과를 보여준다. 본 논문에서 제안한 퍼지-칼만 필터를 평가하기 위해 가속도센서/자이로센서를 융합하여 2축 자세추정시스템(Attitude Heading Reference System)을 설계하였고 무인항공기에 사용되는 자세추정센서 NAV420CA-100과 비교하여 성능을 검증하였다. This paper describes the parameter adjustment method of fuzzy membership function to improve the performance of multi-sensor fusion system using adaptive fuzzy-Kalman filter and cross-validation. The adaptive fuzzy-Kanlman filter has two input parameters, variation of accelerometer measurements and residual error of Kalman filter. The filter estimates system noise R and measurement noise Q, then changes the Kalman gain. To evaluate proposed adaptive fuzzy-Kalman filter, we make the two-axis AHRS(Attitude Heading Reference System) using fusion of an accelerometer and a gyro sensor. Then we verified its performance by comparing to NAV420CA-100 to be used in various fields of airborne, marine and land applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.