Abstract
Tension force of hanger ropes has been recognized and utilized as an important parameter for health monitoring of suspension bridges. Conventional vibration method based on string theory has been utilized to estimate tension forces of relatively long hanger ropes without any problem, however it is convinced that the vibration method is not applicable for shorter hanger ropes in which the influence of flexural stiffness is not ignorable. Therefore, as an alternative of vibration method, a number of feasibility studies of system identification(SI) technique considering flexural stiffness of the hanger ropes are recently performed. In this study, the influence of support condition of the finite element model utilized for the SI method is investigated with numerical examples. The numerical examples are prepared with the specification of the Kwang-Ahn bridge hanger ropes, and it is revealed that the estimation result of the tension force can be varied from -21.6 % to +35.3 % of the exact value according to the consideration of the support condition of FE model. Therefore, it is concluded that the rotational stiffness of the support spring should be included to the list of the identification parameters of the FE model to improve the result of tension estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Korean Society for Noise and Vibration Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.