Abstract
지능형 구조물에서의 진동 등과 같이 주파수가 1 KHz에 이르는 물리량을 고감도로 측정할 수 있는 광섬유센서를 위한 신호 처리기를 구현하기 위하여 광섬유자이로스코프에 적용되었던 전디지털 위상추적신호처리(ADPT)를 교류량 측정용(다이나믹)으로 변경하여 설계하였다. 구현된 다이나믹 ADPT 신호처리기를 광섬유 Mach-Zehnder간섭계에 적용하여 성능을 평가한 결과 ADPT신호처리방식의 한계인 -50 ㏈에 가까운 전고조파 왜율을 가짐을 확인하였다. A signal processor for interferometeric fiber optic sensors, which measure dynamic quantities of frequency up to 1 KHz with high sensitivity, is developed. It is a high-speed version of the all-digital phase tracking (ADPT) processor that was used to measure static or slowly-varying quantities. The processor was applied to a fiber optic Mach-Zehnder interferometer to evaluate the performance. The measured total harmonic distortion was near to -50 ㏈, which is the theoretical limit or the ADPT signal processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.