Abstract

The article considers the results of optimization of the two-spar composite wing for the K-8 training aircraft. The geometric characteristics of the main structural elements of the wing such as spars, ribs and skin; orientation angles of the reinforcing layers and their thicknesses for each wing structural element, as well as the type of composite material and cost were selected as optimization parameters. The proposed optimization procedure includes several steps; each step uses a multi-criteria approach. The minimum deflection, weight, and cost are taken as optimization criteria. All the necessary calculations for selecting the optimal optimization parameters were performed using nonlinear static finite element analysis in the FEMAP software package.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.