Abstract

Introduction. Sign combinatorial spaces that exist in two states: convolute (tranquility) and deployed (dynamics), are considered. Spaces, in particular biological, physical, informational and some others, for which the axioms of sign combinatorial spaces, are valid, have a combinatorial nature. When they are deployed, combinatorial numbers (Fibonacci numbers) are formed, through which logarithmic spirals appear in living nature. These spirals are formed due to the finite sequences that take place during the deployment of the agreed spaces and which are presented geometrically using polar coordinates. Formulation of the problem. The logarithmic spiral is geometrically represented through a “golden rectangle” in which one side is 1,618 times longer (“golden” number or golden section). The presence of the golden ratio in nature is manifested through Fibonacci numbers, which are formed from an arithmetic triangle from elements of finite sequences formed by the deployment of sign combinatorial spaces. But this spiral is transmitted through the “golden rectangle” indirectly. The problem is to trace its formation in nature through constructed sequences, the elements of which are represented by polar coordinates. The approach proposed. Using the finite sequences that are formed during the unfolding of sign combinatorial spaces and the representation of their elements in polar coordinates, we can trace the dynamics of the formation of logarithmic spirals in nature. Conclusion. Representation of biological space as a sign combinatorial space can explain various phenomena in nature. When unfolding these spaces from the convolute spaces finite sequences are formed, the sums of the members of which determine the number of combinatorial configurations in a subset of isomorphic combinatorial configurations and form an arithmetic triangle (Pascal’s triangle). Fibonacci numbers and, accordingly, a golden number are formed from an arithmetic triangle. The logarithmic spiral fits into a golden rectangle. The dynamics of the formation of the logarithmic spiral is traced due to the finite sequences formed as a result of the deployment of the sign combinatorial spaces, the elements of which are presented in polar coordinates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.