Abstract
The leaf area index (LAI) and fractional vegetation cover (FVC) are very important parameters in land-atmosphere interactions. In this study, a very simple but robust and mechanism-based method was developed to derive FVC data based on the relationships between the canopy gap fraction, LAI, and direct solar extinction coefficient. For validation, the LAI data and NDVI-based and mechanism-based FVC data were assimilated into the integrated urban land model (IUM). Using the mechanism-based FVC data as the input, the simulation of the annual average land surface temperatures (LSTs) in the Beijing area were improved compared with those using the NDVI-based FVC data as the input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.