Abstract

The paper studies stationary subalgebras in general position of compact linear groups. We prove that, except for several specific cases, a stationary subalgebra in general position of a tensor product of real or complex compact group representations acts as a scalar on all tensor factors but possibly one. In the real case, it means that this stationary subalgebra in general position is contained in one of the direct summand subalgebras. We used the following concepts to solve this problem: conventional linear algebra arguments; theory of Lie groups, Lie algebras and their representations; and methods similar to those of solving similar problems for complex reductive linear groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.