Abstract

This paper studies how to improve the identification rate of laryngeal disability speech data by convolutional neural network (CNN) and machine learning ensemble learning methods. In general, the number of laryngeal dysfunction speech data is small, so even if identifiers are constructed by statistical methods, the phenomenon caused by overfitting depending on the training method can lead to a decrease the identification rate when exposed to external data. In this work, we try to combine results derived from CNN models and machine learning models with various accuracy in a multi-voting manner to ensure improved classification efficiency compared to the original trained models. The Pusan National University Hospital (PNUH) dataset was used to train and validate algorithms. The dataset contains normal voice and voice data of benign and malignant tumors. In the experiment, an attempt was made to distinguish between normal and benign tumors and malignant tumors. As a result of the experiment, the random forest method was found to be the best ensemble method and showed an identification rate of 85%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.