Abstract
The detailed description of the construction of the canonical form on the higher order frame bundle over an n-dimensional smooth manifold is given. In particular, it is shown that some vector space isomorphism playing the key role in this construction is defined correctly, i. e. it depends only on the frame of order p + 1 and does not depend on the choice of its representative, i. e. a local diffeomorphism which (p + 1)-jet is exactly this frame. This isomorphism acts from the direct sum of n-dimensional arithmetic space and the Lie algebra of the p-th order differential group to the tangent space to the p-th order frame bundle over the manifold at the p-th order frame lying “below”. The action of this isomorphism can be splitted into two its restrictions. The first one acts from the first direct summand, and the second one acts from the second direct summand. It is shown that the first restriction depends only on the choice of the (p + 1)-frame, while the second one is closely related to fundamental vector fields and therefore does not depend of this frame at all.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.