Abstract

The mean-field type control problems with incomplete information are considered. There are several points of view that can be adopted to study the dynamics in probability space. Eulerian framework describes probability flows by the continuity equation. Kantorovich formulation describes each probability flows in terms of a single distribution on the set of admissible trajectories. The superposition principle connects these frameworks for uncontrolled dynamics. In this article, a probability flow in the both frameworks must be generated by a control that based on incomplete information about state and/or the probability at every time instance. This article presents some links between these frameworks in the case of incomplete information. In particular, besides the convexity condition, the assumptions are founded that guarantees the equivalence between the Kantorovich and Eulerian framework. This expands [6, Theorem 1] to mean-field type control problem with incomplete information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.