Abstract

In airplane building and helicopter engineering a bulb angle bar  an angle bar with a bulb at the end of a wall are widespread. They are better than a simple angle bar, since they have higher critical stresses under compression more than the proportionality limit. They are better than T bar, as T bar are fastened with two rows of rivets, which impairs tightness. Bulb angle bar are better than Z bar. The latter are higher, which reduces the structural height of the cross section and increases the load on the panel and usually have an excess cross-sectional area. Bulb angle bars are widely used in the structure of metal fuselages of airplanes and helicopters, in the tail boom of helicopters, in the wing and tail unit of light aircraft, in flaps, ailerons and rudders. However, modern the bulb angle bar have a significant drawback.When a bulb angle bar is loaded by a transverse load from the skin in the wing structure, tail unit, fuselage, except of normal stresses from bending of the stringer with attached skin, supported by ribs or frames, additional normal and shear torsional stresses arise. This torsion is caused by the fact that the lateral load is not applied at the center of the bend. Additional stresses reduce the service life and tightness of the structure in this place. An altered cross-sectional shape of the bulb is proposed for use in light aircraft panels to increase their strength and service life. The change in shape had a significant impact on the location of the center of the bend in the cross section. The determination of the position of the center of the bend in the balloncube was carried out using the Wagner model with walls not working for shear stresses. The modified cross-sectional shape of the bulbogon allowed to reduce the level of residual stresses after the panels were assembled, to rationally transfer the load from the casing to the stringer and to improve the technology of their assembly in the panels. It is recommended to drill holes for rivets in the stringer in the middle of the entire width of its shelf, taking into account the wall.A modified cross-sectional shape of a corner with bulb is proposed for use in light aircraft panels. The change in shape had a significant impact on the location of the center of the bend in the cross section. This made it possible to reduce the level of residual stresses after the assembly of the panels, to rationally transfer the load from the casing to the stringer and to improve the technology of their assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.