Abstract

The paper presents a numerical investigation of aero-dynamic coefficients for a model of an X-51-type high-velocity aircraft moving at Mach 6. The simulation made use of the original and modified versions of our custom hydrocodes (UST3D and UST3D-AUSMPW) designed for numerical simulation of aerodynamics and thermodynamics in high-velocity aircraft of arbitrary shapes. Such hydrocodes implement a model of viscous compressible thermally conductive gas described by a non-steady-state spatial system of Navier --- Stokes equations solved over unstructured three-dimensional tetrahedral meshes. The paper considers the theoretical aspects of simulating the aerodynamics and thermodynamics of high-velocity aircraft numerically. We describe the method for computing mass flow through mesh cell boundaries implemented in the modified custom hydrocode version. We performed cross-validation of the results obtained using our custom hydrocodes and compared our hydrocodes in terms of result convergence time. We show that these custom hydrocodes ensure adequately accurate distribution patterns concerning the fields of the values sought, and provide high-precision computation of aerodynamic characteristics as compared to each other

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.