Abstract
방송 프로그램 콘텐츠들의 증가와 콘텐츠 접근 방법의 다양화로 따라 사용자는 기존의 단순한 방송 시청 환경에서 보다 복합적인 환경에서 다양한 콘텐츠를 접할 수 있게 되었다. 따라서 사용자는 익숙지 않은 다양한 콘텐츠들 중에서 자신이 시청하기 원하는 콘텐츠를 찾고 그것들을 원하는 시간에 시청하기 위해 전보다 많은 노력을 기울이게 되었다. 또한 사용자는 대체로 자신만의 일관성 있는 시청 패턴으로 프로그램을 시청한다. 본 논문에서는 사용자의 개인적인 시청 특성을 발견하여 사용자의 수고를 줄이고 프로그램 시청의 편의성을 제공하기 위해 순차 패턴 마이닝 기법을 이용하여, 개인 맞춤형 TV 프로그램 스케줄러를 제안한다. 이를 위해 개인 맞춤형 TV 프로그램 스케줄 추천 시스템을 제안하였으며, 사용자들의 TV 프로그램 시청 기록을 바탕으로 TV시청 환경에 적합한 순차 패턴 마이닝 기법을 제안하였다. 또한 개인 사용자의 암시적인 선호도를 추출하여 TV 프로그램 추천에 적용, 개인 맞춤형 TV 프로그램 스케줄을 구성하여 추천할 수 있도록 하였다. 이러한 TV 프로그램 스케줄 추천 시스템은 향후 IPTV의 VoD 특성을 고려한 프로그램 스케줄 추천 시스템으로 확장 가능하다. With advent of TV environment and increasing of variety of program contents, users are able to experience more various and complex environment for watching TV contents. According to the change of content watching environment, users have to make more efforts to choose his/her interested TV program contents or TV channels than before. Also, the users usually watch the TV program contents with their own regular way. So, in this paper, we suggests personalized TV program schedule recommendation system based on the analyzing users' TV watching history data. And we extract the users' watched program patterns using the sequential pattern mining method. Also, we proposed a new sequential pattern mining which is suitable for TV watching environment and verify our proposed method have better performance than existing sequential pattern mining method in our application area. In the future, we will consider a VoD characteristic for extending to IPTV program schedule recommendation system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.