Abstract

The article provides the analysis of PrDyFeCoB magnetic microstripes prepared by extracting material from a melt on a rotating cooling disk. The phases 2-14-1, 1-4-1 and 1-2, α-FeСо were verified in the samples. The division of a hysteresis loop into two strands shows that the coercive field of the α-FeСо phase (500–700 Oe) determines the width of the hysteresis loop near the zero field, while the coercive field of the 2-14-1 phase (10 kOe) corresponds to lateral hysteresis loops. The saturation magnetization increases by 25% with an increase in the disk rotation speed by 3 times together with correspondent acceleration of the cooling rate. This is due to the increase in the proportion of the soft magnetic phase α-FeCo and the increase in the proportion of the amorphous phase with a decrease in the proportion of the main magnetic phase 2-14-1. Strip domains and their dynamics during magnetization were detected using Kerr magneto-optical microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call