Abstract

This paper presents the transient-response improved LDO regulator based on parallel error amplifiers. The proposed LDO regulator consists of an error amplifier (E/A1) which has a high gain and narrow bandwidth and a second amplifier (E/A2) which has low gain and wide bandwidth. These amplifiers are in parallel structure. Also, to improve the transient-response properties and slew-rate, some circuit block is added. Using pole-splitting technique, an external capacitor is reduced in a small on-chip size which is suitable for mobile devices. The proposed LDO has been designed and simulated using a Megna/Hynix 0.18 ㎛ CMOS parameters. Chip layout size is 500 ㎛ X 150 ㎛. Simulation results show 2.5 V output voltage and 100 mA load current in an input condition of 2.7 V ~ 3.3 V. Regulation Characteristic presents voltage variation of 26.1 mV and settling time of 510 ns from 100mA to 0 mA. Also, the proposed circuit has been shown voltage variation of 42.8 mV and settling time of 408 ns from 0 mA to 100 mA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call