Abstract

AbstractMathematical simulation of the cascade of displacements in SiC is used to consider the specific features of Frenkel-pair generation upon the scattering of 8- and 15-MeV protons. The distribution histograms of energies acquired not only by primary knocked-out atoms, but also by recoil atoms generated in displacement cascades, are calculated. An analysis of the histograms considers two energy ranges. In the first range of “low” energies, the spontaneous recombination of genetically related Frenkel pairs is dominant. Recoil atoms in the second range have a higher energy, which enables these atoms to leave the spontaneousrecombination zone and dissociate into isolated components. The compensation of lightly doped n - and p -4 H -SiC samples grown by gas-phase epitaxy is experimentally studied under irradiation with 8- and 15-MeV protons. The carrier removal rates are measured. The calculated and experimental data are compared and estimates are obtained for the size of the spontaneous-recombination zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.