Abstract

Results for the interaction of a hot porous titanium carbide frame obtained in the mode of self-propagating high-temperature synthesis with a copper-titanium melt, are presented. The studies were carried out using two types of samples: without and with preheating up to 300 ºC before synthesis in a furnace. The samples were flat compressed tabs of stock material consisting of two layers with different composition. The lower layer was Ti and C stock, and the upper layer was a mixture of Ti and Cu. The process of sample synthesis was carried out in air. After the reaction took place in the lower layer of the samples and the formation of a porous titanium carbide frame, in both samples the upper layer melted and was absorbed into the lower layer unreservedly. X-ray phase analysis of the central part of the sample showed the presence of three phases – Ti, Cu and Cu3Ti. It was found that the resulting composite was a porous TiC frame impregnated with an alloy of copper and titanium. Titanium carbide grains had a largely non-stoichiometric composition and were polyhedral particles of an average size of 20 microns, as well as particles of stoichiometric composition with a size of no more than 10 microns. An intermetallic compound was found in some areas on the surface of TiC particles in the form of a thin film. In addition, it was found that preheating the initial sample in a furnace to 300 ºC before synthesis increases the content of stoichiometric titanium carbide in the obtained cermet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.