Abstract

Reinforcement of concrete with fiberglass improves the performance properties of concrete. The object of the study is fiberglass concrete, where Portland cement or alumina cement is used as a binder, and silica fiberglass is used as a filler. The chemical and phase compositions of Portland cement and alumina cement have been studied. The influence of the products of hydration of Portland cement and alumina cement on the chemical resistance of glass fiber has been investigated. The phase composition of Portland cement and alumina cement after hydration is studied using X-ray phase analysis. It is revealed that the following phases are present in alumina cement: CaОAl2O3, MgОAl2O3, 12CaO•7Al2O3, 2CaO•Al2O3•SiO, the phase composition of Portland cement is Ca6Al2(SO4)3(OH)12•12H2O, Ca2,25(Si3O7,5(OH)1,5)•(H2O), Ca(OH)2, CaCO3. It has been found that when hydrated, Portland cement has a negative effect on fiberglass due to the presence of Ca(OH)2 in it. The phase composition of the alumina cement after hydration shows the absence of Ca(OH)2. The chemical composition of fiberglass is investigated using X-ray fluorescence analysis. The use of alumina cement when using non-alkali-resistant fiberglass in a composite material is substantiated. The study of the stability of fiberglass in the environment of cement drawing has been carried out. Studies have shown that KV-11 grade fiberglass interacted less with hydration products of alumina cement than with hydration products of Portland cement.

Highlights

  • The object of the study is fiberglass concrete, where Portland cement or alumina cement is used as a binder, and silica fiberglass is used as a filler

  • The influence of the products of hydration of Portland cement and alumina cement on the chemical resistance of glass fiber has been investigated

  • It is revealed that the following phases are present in alumina cement: CaОAl2O3, MgОAl2O3, 12CaO·7Al2O3, 2CaO·Al2O3·SiO, the phase composition of Portland cement is Ca6Al2(SO4)3(OH)12·12H2O, Ca2,25(Si3O7,5(OH)1,5)·(H2O), Ca(OH)2, CaCO3

Read more

Summary

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Изучены химический и фазовый составы портландцемента и глинозёмистого цемента. Исследовано влияние продуктов гидратации портландцемента и глинозёмистого цемента на химическую устойчивость стекловолокна. С использованием рентгенофазового анализа исследован фазовый состав портландцемента и глинозёмистого цемента после гидратации. Фазовый состав глинозёмистого цемента после гидратации показал отсутствие Ca(OH). Исследования показали, что стекловолокно марки КВ-11 с продуктами гидратации глинозёмистого цемента менее взаимодействовало, чем с продуктами гидратации портландцемента. Для проведения экспериментальных исследований были использованы следующие сырьевые материалы: портландцемент марки ЦЕМ I 42,5Н производства ЗАО «Белгородский цемент» (ГОСТ 10178–85); глинозёмистый цемент марки ВГЦ-1-35 производства ОАО «Пашийский металлургическо-цементный завод» (ГОСТ 969– 2019); песок Корочанского месторождения (ГОСТ 8736–2014); стекловолокно марки КВ-11 производства АО «НПО Стеклопластик» (ГОСТ Р 56212–2014); вода (ГОСТ 23732–2011). Фазовый состав портландцемента и глинозёмистого цемента до и после гидратации определяли на дифрактометре марки ARL X’TRA. После гидратации и твердения портландцемента в течение 28 суток, а также гидратации и твердения глинозёмистого цемента в течение 3 суток образцы извлекали из форм и исследовали с помощью рентгенофазового анализа. С помощью рентгенофлуоресцентного анализа был определён химический состав стеклошариков, который представлен в таблице 1

Химический состав стеклошариков
Устойчивость стекла к цементной вытяжке
Отдельной пробы
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call