Abstract

시설재배지 토양의 축적양분인 염류를 활용하기 위해 EC가 높은 토양에 여러 킬레이트제를 처리하여 토양의 화학성과 작물의 무기성분 흡수량을 비교 분석하였다. DTPA와 EDTA를 처리한 구에서 킬레이트제는 Ca, Mg, K, P등의 다량원소 뿐만 아니라 Fe, Cu, Mn, Zn 등의 미량원소와 킬레이트 하는 능력이 뛰어났다. 그러나, 토양의 ECDTPA를 처리한 는 EDTA를 처리한 토양보다 낮아졌다. 킬레이트제가 처리된 토양에서 생육한 배추의 무기성분 흡수량을 살펴본 결과 DTPA 0.5 mM 처리한 구에서 배추의 T-N, <TEX>$P_2O_5$</TEX>, <TEX>$K_2O$</TEX>, 그리고 Fe의 흡수량은 다른 처리구보다 높았다. 이로부터 시설재배지의 집적된 양분을 킬레이트화하여 작물의 양분 이용성을 증대하는 데 효과적인 킬레이트제는 DTPA이며, 적정한 농도는 0.5 mM로 나타났다. This study is conducted to evaluate the effects of chelating agents for improving plant growth and reusing accumulated nutrients in soils of plastic film house. Two experiments were carried out at follows: i) The incubation test was conducted using soils treated with 0, 300 mM of EDTA and DTPA to examine the availability of nutrients. ii) For the pot test, chinese cabbages were cultivated in soils with 0, 0.1, 0.5, 1, and 5 mM of EDTA and DTPA to examine the impacts of plant growth response. The application of chelating agents increased ther availability of soil nutrients in the following order: DTPA > EDTA > control. Inorganic concentration of chinese cabbages in DTPA treatments consderably increased in nitrogen, phosphate, iron and aluminium contents than that of the other treatments. The optimal concentration of DTPA for vigorous plant growth as 0.5 mM. Thus, DTPA was more effective than other chelating agents for healty growth of cabbages and the availability of nutrients accumulated in plastic film house.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.