Abstract

In this paper, we present a framework for managing group behaviors in multi-agent swarm systems. The framework explores the benefits by dynamic associations with the proposed artificial potential functions to realize complex swarming behaviors. A key development is the introduction of a set of flocking by dynamic association (DA) algorithms that effectively deal with a host of swarming issues such as cooperation for fast migration to a target, flexible and agile formation, and inter-agent collision avoidance. In particular, the DA algorithms employ a so-called systematic singular association (SSA) rule for fast migration to a target and compact formation through inter-agent interaction. The resulting algorithms enjoy two important interrelated benefits. First, the SSA rule greatly reduces time-consuming for migration and satisfies low possibility that agents may be lost. Secondly, the SSA is advantageous for practical implementations, since it considers for agents even the case that a target is blocked by obstacles. Extensive simulation presents to illustrate the viability and effectiveness of the proposed framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.