Abstract
Abstract. The paper presents the results of determining the sorption properties of nonwoven materials modified with clay minerals, obtained on the basis of fibrous waste, in relation to the methylene blue indicator to determine the possibility of using the created materials in the purification of light industry wastewater from dyes and heavy metal ions.Purpose. Determination of kinetic regularities of sorption (by methylene blue) of fibrous nonwoven materials modified with different types and amounts of clay adsorbents.Methodology. Nonwovens obtained from elastic fibrous waste of the textile industry were used as a basis in the work. They consisted of Lycra 162 C (PU) complex fibers and Nylon 6.6 f20 / 1 (PA-6.6) fibers in a ratio of 70/30 wt. %. For bonding the nonwoven material, adhesive bicomponent fibers Acebon 4/51 black (4 den) (BVCh) (20 wt%) were added to the initial composition. To enhance the sorption capacity of the PU / PA / BV 80/20 fabric, powders of montmorillonite clay (clay grade PBA-18) and palygorskite (clay grade PP-5) type were introduced in an amount of up to 40% by weight of the nonwoven material. Evaluation of the sorption properties of modified fibrous materials with different clay adsorbents was performed by determining the change in the optical density of MS solutions of a given concentration.Scientific novelty. It was found that fibrous materials modified by the studied samples of montmorillonite and paligorskite clays show high absorption capacity relative to the methylene blue dye due to its multilayer sorption. After 24 hours of processing, the degree of absorption is 70% when using clay brand PBA-18 in the amount of 40% by weight of the fibrous material, which is higher than when using clay brand PP-5 (45%) under the same conditions.Practical value. Sorption materials modified with clay minerals can be further used to treat wastewater from light and chemical industries from heavy metal ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.