Abstract

Densification behavior of nanocrystalline titania powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. Lee and Kim proposed the Cap model by developing the parameters involved in the yield function of general Cap model and volumetric strain evolution under cold isostatic pressing. The parameters in the Drucker/Prager Cap model and the proposed model were obtained from experimental data under triaxial compression. Finite element results from the models were compared with experimental data for densification behavior of nanocystalline ceramic powder under cold isostatic pressing and die compaction. The proposed model agreed well with experimental data under cold compaction, but the Drucker/Prager Cap model underestimated at the low density range. Finite element results, also, show the relative density distribution of nanocystalline ceramic powder compacts is severe compared to conventional micron powder compacts with the same averaged relative density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call