Abstract
In this research paper we present an implementation of a singular value decomposition algorithm designed specifically for the graphics processing unit. It consists of two parts: orthogonal matrix decomposition and matrix diagonalization. Presented an implementation of bidiagonalization algorithm where we calculate the main bidiagonal matrix and two orthogonal multipliers using a series of House- holder transformations, as well as diagonalization algorithm with the help of Givens rotation matrices. Bothe these parts are implemented in jCUDA environment. Experiments have been conducted, the results of which have been thoroughly investigated on the matter of time consumption and calculations error. We’ve also compared our implementation with alternatives both on central and graphic processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.