Abstract

Is generated in real time in the real world, a large amount of time series data from a wide range of business areas. But it is not easy to determine the optimal model for the description and understanding of the time series data is represented as a dynamic feature. In this study, through the HMM suitable for estimating the short and long-term forecasting model of time-series data to estimate a model that can explain the characteristics of these time series data, it was estimated to predict future patterns of movement. The actual stock market through various materials, information criterion and optimal model estimation for the length of the most efficient data was found to accurately estimate the state of the model. Similar movement patterns predictive than the long-term prediction is more similar to the short-term prediction of the experimental result were found to be.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.