Abstract

In a pilot natural super-hydrophobic surfaces study, a super-hydrophobic surface was made by coating, etching, laser ablation, chemical vapor deposition and lithography. In this study, cone-shaped periodic micro and nano-structures were constructed on a silica surface with femtosecond and picosecond laser, and the period of micro-structures between cone shape patterns was increased with 10 μm intervals. The contact angle and image of the super-hydrophobic surface were analysed and the cone (Aspect-ratio 1.27) shape model with micro-protrusion structure similar to the surface of the lotus leaf was made to measure the contact angle. To analyse the differences in the contact angles between the cone shapes and heights of the micro-protrusion, different samples with cone (Aspect-ratio 1.27), sphere (Aspect-ratio 1.00) shapes were made through laser micro-machining technology. To mimick the natural lotus leaves, the optimum condition was a cone shape. Samples of PDMS with different shapes and mixed micro/nano-structures were fabricated with a PDMS mold insert. The largest contact angle was measured at 170.42° which is similar to the contact angle of the lotus leaf. This mold insert could be used repeatedly. The molding process is advantageous for large areas and mass production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call