Abstract

In this study star photometry was applied to retrieve aerosol optical thickness (AOT) at night. The star photometry system consisted of small refractor, optical filters, CCD camera, and driving mount and was located in Suwon. The calibration constants were retrieved from the astronomical Langley method but standard deviations of these were more than 10% of the mean values. After the calibration the nighttime AOT was retrieved and cloud-screened in clear six days from 25 Nov. 2014 to 17 Jan. 2015. To estimate the quality of the measurements the nighttime AOT was combined with daytime AOT retrieved from sky-radiometer that was located in Seoul and 17 km away from the star photometry system. In spite of the uncertainty of the calibration constants and the spatial difference of two observation systems, the temporal changes of the nighttime AOT coincided with the daytime. The nighttime <TEX>${\AA}ngstr{\ddot{o}}m$</TEX> exponent was about 20% lower and more variable than the daytime because of the uncertainty of the calibration constants. If the calibration process is more precise, the combination of star and sun or sky photometry system can monitor the air pollution day and night constantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call