Abstract

New and renewable energy sources have drawn attention because of climate change. Many studies have been carried out in waste-to-energy field. Fast pyrolysis of waste lignocelluosic biomass is one of the waste-to-energy technologies. Bubbling fluidized bed (BFB) reactor is widely used for fast pyrolysis of the biomass. In BFB pyrolyzer, bubble behavior influences on the chemical reaction. Accordingly, in the present study, hydrodynamic characteristics and fast pyrolysis reaction of waste lignocellulosic biomass occurring in a BFB pyrolyzer are scrutinized. The computational fluid dynamics (CFD) simulation of the fast pyrolysis reactor is carried out by using Eulerian-Granular approach. And two-stage semi-global kinetics is applied for modeling the fast pyrolysis reaction of waste lignocellulosic biomass. To summarize, generation and ascendant motion of bubbles in the bed affect particle behavior. Thus biomass particles are well mixed with hot sand and consequent rapid heat transfer occurs from sand to biomass particles. As a result, primary reaction is observed throughout the bed. And reaction rate of tar formation is the highest. Consequently, tar accounts for 66wt.% of the product gas. However, secondary reaction occurs mostly in the freeboard. Therefore, it is considered that bubble behavior and particle motions hardly influences on the secondary reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call