Abstract
The research on the sterlet roe artificial insemination using cryopreserved sperm was carried out in the research base of the RAS Southern Scientific Centre (the Rostov region). Reproductive cells (including cryopreserved cells), larvae, sterlet fry ( Acipenser ruthenus Linnaeus, 1758) were taken as an object of research. A half of the roe (1.7 kg) taken from female starlet was inseminated by native sperm (control group); another half was inseminated by defrosted sperm of two males, which was stored in liquid nitrogen at -196ºC during 3 years (pilot group). Incubation lasted 5 days at water temperature 14.5-18.2ºC, with daily fluctuations of temperature 1.9ºC. Roe insemination in the control group made 90%, in the pilot group - 70%. Roe embryonic growth in the control group was faster, but embryogenesis duration in the pilot group met the standard time limits. Hatching prolarvae in the control group started one hour earlier, than in the pilot group; it made 75% and 60% of all incubated roe, correspondingly. Waste during the period of larvae maturing before they pass to mixed feeding was negligible - 2% in the control group and 3.4% in the pilot group. According to the test results, "open field" of reactivity of the central nervous system in the pilot group fry didn’t change from the control group fry, but more active response to stimuli was noted in the pilot group, which is very important for fry adaptation to the conditions in natural water basins. It was established that sterlet offspring obtained with use of defrosted sexual cells does not differ from the offspring obtained using native sperm and has higher morphometric characteristics. The test results prove the possibility and practicability of using sexual cells stored in liquid nitrogen for artificial restoration and formation of sturgeon fish broodstocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Astrakhan State Technical University. Series: Fishing industry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.