Abstract
This paper presents a context recognition method using environmental sound signals, which is applied to a mobile-based client monitoring system. Seven acoustic contexts are defined and the corresponding environmental sound signals are obtained for the experiments. To evaluate the performance of the context recognition, MFCC and LPCC method are employed as feature extraction, and statistical pattern recognition method are used employing GMM and HMM as acoustic models, The experimental results show that LPCC and HMM are more effective at improving context recognition accuracy compared to MFCC and GMM respectively. The recognition system using LPCC and HMM obtains 96.03% in recognition accuracy. These results demonstrate that LPCC is effective to represent environmental sounds which contain more various frequency components compared to human speech. They also prove that HMM is more effective to model the time-varying environmental sounds compared to GMM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korea Institute of Information and Communication Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.