Abstract
탄소나노튜브의 수소 저장소로써의 가능성을 평가하기 위한 분자 모사를 수행하였다. 일정한 온도와 압력에서 Grand canonical Monte Carlo 방법을 적용하여 탄소나노튜브에 수소가 흡착된 평형 상태를 구현하였다. Lennard-Jones 퍼텐셜 모델로부터 탄소나노튜브와 수소 분자 간 상호 작용 에너지를 계산 한 결과에 의하면 수소 분자는 나노튜브 외부보다 내부에 많은 양이 흡착되는 반면 흡착 강도는 외부가 높은 것으로 나타났다. 여러 가지 온도와 압력에 대해 흡착율을 검토하였으며, 200 K와 200 bar의 저온 고압 조건에서 약 2.5wt%의 흡착율을 나타내었다. Molecular simulation was performed to evaluate the possibility of hydrogen storage of carbon nanotubes. The equilibrium state of hydrogen adsorbed on carbon nanotubes was simulated by grand canonical Monte Carlo method at constant temperature and pressure. The interaction energy between hydrogen molecule and carbon nanotube was calculated by Lennard-Jones potential model. According to the interaction energy calculated, more hydrogen molecules were adsorbed on the inside than the outside of nanotubes. Whereas the adsorption strength was higher outside than inside. Adsorption capacity was investigated for various temperature and pressure. The maximum capacity of carbon nanotube for hydrogen storage was 2.5wt% at 200 K and 200 bar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.