Abstract

Heavy traffic reduces the strength characteristics of asphalt concrete, causes peeling on the pavement. Crushed stone-mastic asphalt concrete is designed for the device of the upper layers of the coating on roads with high traffic intensity. The use of polymerasfalt concrete on a modified binder can lead to an improvement in the physical and mechanical characteristics of asphalt concrete and increase its re-sistance to climatic influences. The main aspects of improving the quality of crushed stone-mastic as-phalt concrete (SMA) due to the use of a binder modified with sevilen (SEVA) are discussed. The effect of bitumen containing sevilen with 22 and 29 % vinyl acetate groups on the properties of crushed stone-mastic asphalt concrete has been investigated. Analysis of the results showes that the use of modified binders has a positive effect on the entire complex of physical and mechanical parameters of polymer asphalt concrete. An increase in the strength of the samples at 20 and 50 °C, a decrease in this indicator at 0 °C is established. The indicators of water and heat resistance, shear resistance and crack resistance are also improved, which should have a positive effect on the durability of the road surface. Rational concentrations of polymer additives and the amount of vinyl acetate groups in its composition have been established. The adhesion of the binder to the mineral part of the asphalt con-crete mixture is estimated. The index of sensitivity to temperature differences of asphalt concrete sam-ples is considered due to the fact that asphalt concrete is a material that reacts to temperature fluctua-tions in the external environment. The analysis of the results of the tests carried out demonstrates that the use of modified binders has a positive effect on the entire complex of physical and mechanical pa-rameters of polymer asphalt concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.