Abstract

The purpose of the work: to create an algorithm and implement it in a software tool for classifying photographic images of pathology of the central region of the human fundus, detected by autofluorescence research, according to 8 types-patterns: normal, minimal changes, focal, spotted, linear, lace-like, reticular, speckled. Methods: machine learning algorithms (convolutional neural networks) and computer vision (histogram methods, perceptual hash algorithms). The main feature of the task: an ultra-small set of unique photoimages with an accurately diagnosed type of pathology (18 pieces). The accuracy of forecasts when solving a problem using a neural network is 12.5%. The accuracy of the predictions of the developed algorithm using a combination of histograms, perceptual hash and 1 reference photo of the normal state of the fundus is 60% when selecting the classifier parameters from a set of 1 photo for 1 pathology. When using 3 reference photos, the norm is 85%. The proposed solution can be used in medicine, ophthalmology, photonics and optics of biological tissues, machine learning for both research and educational purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call