Abstract

Using a molecular dynamics method water-like anomalies in a core-softened system depending on the potential parameters and space dimension were investigated. We have examined the anomalies of density, diffusion and structure and have shown that the sequence of anomalous regions cardinally depends on the repulsive step width and space dimension. Thus, in a three-dimensional (3D) system with small values of the step width the sequence of anomalous regions is the same as in water, whereas in a two-dimensional (2D) system – as in liquid silica. With an increase in the step width, an inversion of the regions of the diffusion anomaly and of the density anomaly is observed. Such an unusual sequence of anomalous regions different from water and liquid silica is exclusively caused by the step width and does not depend on the space dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.