Abstract

Обзор посвящен классическим и современным задачам, связанным с целой функцией $\sigma({\bf u};\lambda)$, которая определяется семейством неособых алгебраических кривых рода 2, где ${\bf u}= (u_1,u_3)$, $\lambda=(\lambda_4, \lambda_6, \lambda_8, \lambda_{10})$. Эта функция является аналогом сигма-функции Вейерштрасса $\sigma({{u}};g_2,g_3)$ семейства эллиптических кривых. Логарифмические производные порядка 2 и выше функции ${\sigma({\mathbf{u}};\lambda)}$ порождают поле гиперэллиптических функций от ${\mathbf{u}} = (u_1,u_3)$ на якобианах кривых с фиксированным значением вектора параметров $\lambda$. Мы рассматриваем три ряда Гурвица $\sigma({\mathbf{u}};\lambda)=\sum_{m,n\ge0}a_{m,n}(\lambda)\frac{u_1^mu_3^n}{m!n!}$, $\sigma({\mathbf{u}};\lambda) = \sum_{k\ge 0}\xi_k(u_1;\lambda)\frac{u_3^k}{k!}$ и $\sigma({\mathbf{u}};\lambda) = \sum_{k\ge 0}\mu_k(u_3;\lambda)\frac{u_1^k}{k!}$. Обзор посвящен теоретико-числовым свойствам функций $a_{m,n}(\lambda)$, $\xi_k(u_1;\lambda)$ и $\mu_k(u_3;\lambda)$. Он включает самые последние результаты, доказательства которых использует тот фундаментальный факт, что функция $\sigma ({\mathbf{u}};\lambda)$ определяется системой четырех уравнений теплопроводности в неголономном репере шестимерного пространства.

Highlights

  • Deep results on the number-theoretic properties of fields of hyperelliptic functions were obtained in the papers of V

  • We mainly discuss the results obtained due to a new direction in the study of fields of Abelian functions. This direction arose in the mid-seventies of the last century in response to the discovery that Abelian functions provide a solution to a number of challenging problems of modern theoretical and mathematical physics

  • The theory of the hyperelliptic sigma functions was developed significantly and they were generalized to the large family of algebraic curves called (n, s) curves, which include the hyperelliptic curves as special cases

Read more

Summary

Introduction

Deep results on the number-theoretic properties of fields of hyperelliptic functions were obtained in the papers of V. In this survey, we will discuss in detail expansions of the sigma functions of curves of genus 1 and 2, including the Onishi’s proof for Hurwitz integrality (see Sections 2.2 and 2.3). In [38], the von Staudt-Clausen theorem and the Kummer’s congruence for the classical Bernoulli numbers are extended to the generalized Bernoulli-Hurwitz numbers in the case of the curves y2 = x2g+1 − 1 and y2 = x2g+1 − x. We will extend the methods of [38] to the curve y2 = x5 + λ4x3 + λ6x2 + λ8x + λ10 and show some number-theoretical properties for the generalized Bernoulli-Hurwitz numbers associated with this curve (Theorem 11) These results will give the precise information on the series expansion of the solution of the inversion problem of the ultra-elliptic integrals

The sigma function
Hurwitz integrality of the expansion of the elliptic sigma function
Hurwitz integrality of the expansion of the two-dimensional sigma function
Universal Bernoulli numbers
The coefficients of u3
The coefficients of u1
The ultra-elliptic integrals
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call