Abstract

무선 센서 네트워크의 필요성이 증가함에 따라 관련된 연구 또한 활발히 진행되고 있다. 특히, 에너지 제약적인 무선 센서 네트워크의 생존 시간을 증가시키고자 하는 클러스터링 기법들이 많이 연구되고 있다. 대표적인 LEACH와는 달리, 최근의 클러스터링 기법들은 다중 홉으로 데이터를 전송하기 때문에 데이터 병목 현상 문제가 발생한다. 불균형 클러스터링(unequal clustering) 기법들은 라우팅 경로를 증가시켜 데이터 병목 현상 문제를 해결하였다. 불균형 클러스터링 기법들의 대부분은 BS(Base Station)와의 거리만을 고려하여 클러스터의 크기를 결정하였기 때문에, 클러스터 헤드의 에너지 소모가 커지는 문제점이 있다. 본 논문에서는 클러스터 헤드의 에너지 소모를 최소화하고, 데이터 병목 현상 문제도 해결할 수 있는 불균형 클러스터링 알고리즘을 제안하였다. 기본 아이디어는 적절한 클러스터 헤드를 선출한 이후, BS와의 거리와 노드의 에너지 상태, 이웃 노드의 수를 고려하여 클러스터의 크기를 결정하고, 동시에 클러스터 헤드의 전송기능을 분담하는 노드를 선정하는 것이다. 이처럼 클러스터 헤드의 에너지 소모를 최소화함으로써 클러스터링의 반복횟수를 감소시킬 수 있었으며, 더불어 전체 네트워크의 에너지 소모도 감소시킬 수 있었다. The necessity of wireless sensor networks is increasing in the recent years. So many researches are studied in wireless sensor networks. The clustering algorithm provides an effective way to prolong the lifetime of the wireless sensor networks. The one-hop routing of LEACH algorithm is an inefficient way in the energy consumption of cluster-head, because it transmits a data to the BS(Base Station) with one-hop. On the other hand, other clustering algorithms transmit data to the BS with multi-hop, because the multi-hop transmission is an effective way. But the multi-hop routing of other clustering algorithms which transmits data to BS with multi-hop have a data bottleneck state problem. The unequal clustering algorithm solved a data bottleneck state problem by increasing the routing path. Most of the unequal clustering algorithms partition the nodes into clusters of unequal size, and clusters closer to the BS have small-size the those farther away from the BS. However, the energy consumption of cluster-head in unequal clustering algorithm is more increased than other clustering algorithms. In the thesis, I propose an energy efficient unequal clustering algorithm which decreases the energy consumption of cluster-head and solves the data bottleneck state problem. The basic idea is divided a three part. First of all I provide that the election of appropriate cluster-head. Next, I offer that the decision of cluster-size which consider the distance from the BS, the energy state of node and the number of neighborhood node. Finally, I provide that the election of assistant node which the transmit function substituted for cluster-head. As a result, the energy consumption of cluster-head is minimized, and the energy consumption of total network is minimized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.