Abstract

Electric pumping units are not characterized by optimal operating modes and today are energy-intensive technologies. Water consumption is determined by unevenness and is formed under the influence of many, often uncontrollable factors. The inconsistency of the planned water supply regime with the actual water consumption leads to excessive pressures, which causes not only direct overconsumption of electricity at pumping stations, but also increases the likelihood of accidents in the network, contributes to greater water losses due to leaks in the water supply network. additional overconsumption of electricity consumed by pumping units to compensate for pressure loss. With the right choice of electric pump unit, its mechanical characteristics and power of the motor are designed to provide the required pressure in the system at maximum water consumption (morning and evening). At other times of the day, due to the decrease in water consumption, the pressure in the system increases and it is necessary to cover the throttle valve, and this requires constant rotation near it and is accompanied by electricity losses. In electric pumps, which are equipped with an unregulated electric drive, the flow control is carried out in almost the only traditional way - throttle on the discharge side. The paper reveals the need for transition from throttle control systems of pump units to automatic control systems by automatically maintaining the required technological parameter, in particular, the pressure at the flow rate of changing water due to the use of frequency-regulated asynchronous electric drives. Keywords: water pumping unit, energy consuming technologies, throttling, frequency-regulated electric drive

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call