Abstract

The paper presents results of studying the possibility of synthesizing aqueous dispersions of the vanadium (V) oxide nanoparticles that retain aggregative stability for a long period. The experiments performed resulted in obtaining tubular nanoparticles of the vanadium pentoxide (V2O5) 50 µm long and 5--10 nm in diameter. Wall thickness of the obtained tubes was 1.1 nm. It was experimentally established that type of the acid used was not affecting the resulting nanoparticles size, but was significantly effecting the shelf life. To increase the nanoparticles optimal shelf life, it is proposed to use the hydrochloric acid solutions as the peptizing agent. This method made it possible not only to increase the system stability, but also to raise the nanoparticles concentration up to 1 % of the mass. In the framework of experiments on studying the obtained particles surface characteristics, it was found that nanoparticles in the range of pH = 3.0--4.2 were negatively charged, and aggregation stability was mainly determined by the electrostatic factor. The proposed chemical technology could be used in industrial production of the vanadium pentoxide nanoparticles in various industries

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call