Abstract

In the process of designing and operating the aircraft, it is important to determine the ultimate state of the structure, taking into account the dynamic load of the structure and its stability. The ultimate state of the structure is characterized by damage, in which the structure still retains the ability to withstand without catastrophic destruction of the maximum operating load. The main method of studying the stability of the structure is the dynamic method. It allows us to investigate the perturbed motion of a structure as a nonconservative system for some initial perturbation. The monotonic departure of the system from the equilibrium position or its oscillations with increasing amplitudes indicate the instability of the structure. The paper analyzes the effect of damage to the aircraft structure on its dynamic stability based on the determination of the dynamic response of the aircraft to some non-stationary perturbation, for example, on the action of a turbulent atmosphere. The method of computational analysis is used to study the dynamic stability of the structure. The basis of this method is mathematical modeling (MM) of the operation of the aircraft in the form of a system of equations of motion and deformation of the structure. The problem of dynamic aeroelasticity is considered - the behavior of the elastic damaged structure of the aircraft in the air flow to the initial perturbation. On the basis of computer simulation, the dynamic stability of the elastic structure, its oscillating or quasi-static (aperiodic) deformation motion within the flight range of the aircraft is estimated. On the basis of parametric researches the limits of instability of a design at the set damages for typical operating conditions are estimated. The relevance of the direction focused on the creation and advanced operation of MM aircraft - their mathematical backups in the process of design and operation of aircraft due to the complexity and limited capabilities of ground experimental installations and flight experiment. It is noted that the condition for the application of this method is the formed MM operation of the aircraft and the availability of information on the mass-inertial, stiffness and aerodynamic characteristics of the aircraft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call