Abstract

The analysis of heat transfer in the contact-film-substrate system under conditions when the heat removal from the sample to the substrate is insufficient to ensure that the sample is not overheated. For low temperatures, a method is proposed for increasing the heat removal from thin-film samples by passing a high-density electric current through them. The property of an anomalously high thermal conductivity of copper at temperatures from 5 to 50 K was used as the main factor in enhancing heat removal. The heat equation for the film-substrate system was numerically solved under the condition of additional heat transfer to potential contacts. It has been shown that beryllium bronze contacts can provide efficient heat removal from samples of superconducting films in a resistive state under conditions of strong Joule heat release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.