Abstract
The article is aimed at summarizing the concepts of a derivative graph and a primitive graph for graphs with backbone connectivity. Theorems are formulated and proved on the main connectedness of the graph of the derivative and on the primitive graph of the main connected graphs. The theoretical and practical significance of the result is to simplify the search for successful visualization of algebraic Bayesian networks, which would help to identify the features of their structure, as well as the definition of new types of global structures of these networks. Such structures would allow us to store the same information, but use other output algorithms, which would simplify the software implementation of this model. Note that maintaining the property of trunk connectivity when finding the graph of the derivative is considered in this article for the first time.
Highlights
The article is aimed at summarizing the concepts of a derivative graph and a primitive graph for graphs with backbone connectivity
The theoretical and practical significance of the result is to simplify the search for successful visualization of algebraic Bayesian networks, which would help to identify the features of their structure, as well as the definition of new types of global structures of these networks
Note that maintaining the property of trunk connectivity when finding the graph of the derivative is considered in this article for the first time
Summary
В искусственном интеллекте и мягких вычислениях одним из инструментов представления данных и знаний с неопределенностью являются алгебраические байесовские сети [3,4,5]. В свою очередь, они являются подклассом логико-вероятностных графических моделей. Л. вод, апостериорный вывод, поддержание непротиворечивости) существенную роль играет глобальная структура сети: она представляется в виде графа смежности, отличительной чертой которого является магистральная связность [6]. При этом возникают вопросы сохранения свойства магистральной связности этих структур, лежащих в основе сети. Целью настоящей статьи является анализ сохранения свойства магистральной связанности графа при построении графа его производной и первообразной
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.