Abstract
The article under consideration is devoted to continuous almost periodic at infinity functions defined on the whole real axis and with their values in a complex Banach space. We consider different subspaces of functions vanishing at infinity, not necessarily tending to zero at infinity. We introduce the notions of slowly varying and almost periodic at infinity functions with respect to these subspaces. For almost periodic at infinity functions (with respect to a subspace) we give four different definitions. The first definition (approximating) is based on the approximation theorem. In the classical version, for almost periodic functions, they are represented as uniform closures of trigonometric polynomials. In our case, the Fourier coefficients are slowly varying at infinity functions. The second definition, which is an analogue of G. Bohr’s definition of an almost periodic function, is based on the concept of an ε-period. The third definition meets S. Bochner’s criterion for the almost periodicity of functions. The fourth definition is given in terms of factor space. With the help of the results of the theory of almost periodic vectors in Banach modules those four definitions are proved to be equivalent. In addition, it was proved that the introduced spaces of slowly varying and almost periodic at infinity functions with respect to different subspaces of functions vanishing at infinity coincide with the spaces of ordinary slowly varying and almost periodic at infinity functions, respectively. The feasibility of consideration of these functions is due to the fact that the solutions of some important classes of differential and difference equations are almost periodic at infinity. We consider differential equations whose right-hand side is a function vanishing at infinity and obtain necessary and sufficient conditions for their bounded solutions to be almost periodic at infinity functions. We also study an asymptotic representation of the solutions.
Highlights
The article under consideration is devoted to continuous almost periodic at infinity functions defined on the whole real axis and with their values in a complex Banach space
We consider different subspaces of functions vanishing at infinity, not necessarily tending to zero at infinity
We introduce the notions of slowly varying and almost periodic at infinity functions with respect to these subspaces
Summary
Статья посвящена исследованию непрерывных почти периодических на бесконечности функций, заданных на всей вещественной оси и со значениями в комплексном банаховом пространстве. Вводятся понятия медленно меняющихся и почти периодических на бесконечности функций относительно введенных подпространств. Для почти периодических на бесконечности функций (относительно подпространства) приводятся четыре различных определения. Благодаря использованию результатов теории почти периодических векторов в банаховых модулях доказывается, что все четыре определения эквивалентны. Целесообразность рассмотрения почти периодических на бесконечности функций обусловлена тем, что решения некоторых важных классов дифференциальных и разностных уравнений являются почти периодическими на бесконечности. В статье рассматриваются дифференциальные уравнения с правой частью из различных подпространств исчезающих на бесконечности функций. Получены необходимые и достаточные условия принадлежности ограниченных решений обыкновенных дифференциальных уравнений классу почти периодических на бесконечности функций, и изучено асимптотическое представление решений. И. Исследование некоторых классов почти периодических на бесконечности функций // Известия Саратовского университета.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.